R Programing (R Language) – Complete Course

About R Programing

This complete R programming course covers data analysis, statistical computing, data visualization, and real-world applications using R language, helping learners gain practical skills for research, analytics, and data-driven decision making.

Module 1: Introduction to R

  • What is R?
  • Applications of R (Data Analysis, Statistics, ML)
  • R vs Python
  • Installing R & RStudio
  • R environment & workspace
  • R packages & CRAN

 

Module 2: R Basics

  • R syntax & structure
  • Variables & data types
  • Operators
  • Comments
  • Input & output
  • Type conversion

 

Module 3: Data Structures in R

  • Vectors
  • Lists
  • Matrices
  • Arrays
  • Data Frames
  • Factors
  • Attributes

 

Module 4: Control Structures

  • Conditional statements (if, ifelse, switch)
  • Loops (for, while, repeat)
  • break & next
  • Vectorized operations

 

Module 5: Functions in R

  • Built-in functions
  • User-defined functions
  • Function arguments
  • Scope & environments
  • Anonymous functions
  • Apply family (apply, lapply, sapply, tapply)

 

Module 6: Data Import & Export

  • Reading data from CSV, Excel, TXT
  • Importing from databases
  • Reading JSON & XML
  • Writing data to files
  • Data handling best practices

Module 7: Data Manipulation

  • Data subsetting
  • Data cleaning
  • Handling missing values
  • Sorting & filtering
  • Data transformation
  • dplyr package
    • filter, select, mutate, arrange, summarize

Module 8: Data Visualization

  • Base R plotting
  • ggplot2 basics
  • Bar charts, line graphs, histograms
  • Box plots & scatter plots
  • Customizing plots
  • Data visualization best practices

Module 9: Exploratory Data Analysis (EDA)

  • Descriptive statistics
  • Correlation analysis
  • Outlier detection
  • Data distribution analysis
  • Summary reports

Module 10: Statistical Analysis in R

  • Probability distributions
  • Hypothesis testing
  • t-test, z-test
  • ANOVA
  • Chi-square test
  • Correlation & regression analysis

Module 11: Regression Models

  • Linear regression
  • Multiple regression
  • Logistic regression
  • Model interpretation
  • Model diagnostics

Module 12: Machine Learning with R (Intro)

  • ML concepts overview
  • Supervised learning
  • Unsupervised learning
  • k-NN
  • Decision Trees
  • Random Forest (intro)
  • Model evaluation

Module 13: Time Series Analysis

  • Time series concepts
  • Trend & seasonality
  • Moving averages
  • ARIMA models
  • Forecasting

Module 14: Text Mining & NLP (Intro)

  • Text preprocessing
  • Tokenization
  • Term frequency
  • Sentiment analysis
  • tm & tidytext packages

Module 15: Working with Big Data (Intro)

  • Big data concepts
  • Integration with Hadoop/Spark
  • Using sparklyr
  • Large dataset handling

Module 16: R for Data Reporting

  • R Markdown
  • Creating reports
  • Dashboards using Shiny (intro)
  • Data storytelling

Module 17: Advanced R Concepts

  • Object-oriented programming in R
  • S3, S4, R6 classes
  • Performance optimization
  • Parallel computing
  • Memory management

Module 18: Hands-On Projects

  • Data analysis project
  • Sales data analysis
  • Customer segmentation
  • Forecasting project
  • Statistical case study
  • Final capstone project

Module 19: R Packages & Ecosystem

  • tidyverse
  • caret
  • ggplot2
  • shiny
  • data.table
  • zoo, forecast

Module 20: Career & Certification Guidance

  • R-related job roles
  • Resume & portfolio building
  • Interview questions
  • Certification roadmap

R Programming Master

Instructor

An R programming instructor teaches data analysis, statistics, visualization, and practical applications using R language for analytics and research.